
Computer-Aided Problem-Solving Test 2 31/03/2021

Instructions

• There are two pages of questions.

• This examination is open book.

• You have 2 hours and 20 minutes (including uploading). People with special needs
(according to the official information of the Educational support center) have 2 hours
and 40 minutes in total.

• The grade will be computed as the number of obtained points, plus 1.

• Do not communicate with other students during the examination. The pledge you signed is valid
for this instance too, so you do not need to sign and upload it again.

• Stay in the online room during the exam. Information delivered there is official and part of the
instructions of the examination.

• The exam must be written by hand in a tidy and legible way, scanned and uploaded as PDF
to Nestor.

• Upload the PDF in vertical orientation, such that it requires no rotation to be read-
able.

• You are supposed to write algorithms using Python language, but syntactic errors (e.g. indentation)
are allowed as far as the written algorithm is understood. Please note that having wrong indexing
in an array, for instance, it is an algorithmic error, not a syntax error.

• Keep the names of the variables as stated in the question.

• If you do not follow these instructions you will receive the minimal grade.

• For all complexity calculations, define your elementary operations as addition, division and multi-
plication.

1 Determinants (2.5 points)

Consider the invertible matrix A ∈ Rn×n. Recall that the determinant of such matrix can be computed
recursively as:

det(A) =

n−1∑
j=0

(−1)j det(B0,j)A[0, j]

with Bi,j the matrix built from A by removing the i-th row and j-th column.

1. (0.5 pt) Write a function that, receiving a 2 × 2 matrix as an input, returns the determinant of
the matrix.

2. (2 pts) Write a function that, by receiving a n×n matrix as an input, returns the determinant of
the matrix by calling itself recursively. You need to implement also the construction of the B0,j .

2 Low-rank updates (6.5 points)

Consider an invertible matrix A ∈ Rn×n and a vector ~b = [β1, . . . , βn]ᵀ. Consider then the matrix

B = A+~b~bᵀ.

1. (2 pts) Write a function that receives A and ~b and a vector ~c and returns the result of B~c. The
algorithm should have a computational cost as close as possible to performing A~c. You cannot use
vector or matrix operations, you have to iterate over the components and use scalar operations.

2. (1 pt) Compute the total number of operations of performing B~c in terms of n using the algorithm
you created. Specify the constants for each of power of n.
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It can be shown that:
B−1 = A−1 −A−1~b(1 +~bᵀA−1~b)−1~bᵀA−1 (1)

3. (1.5 pt) Write a function that, by receiving the LU -factors of A, ~b and a vector ~γ as input,
returns the solution ~x to the system B~x = ~γ using the identity (1). Therefore, the function
should not compute the matrices A−1, B,B−1 explicitly. Assume that you already have available
a function that returns the solution to a linear system by receiving the LU-factors of a matrix and
a right-hand-side. You can use vector (not matrix) operations sum, subtraction, dot product, and
multiplication/division by a scalar.

4. (1 pts) Compute the number of operations of the algorithm solving the linear system B~x = ~γ.
Assume that solving the linear systems associated with L and U costs n2 elementary operations
each.

5. (1 pts) If the cost of doing an LU factorization of a matrix in Rn×n is 2/3n3, which strategy would
lead to a reduced number of operations to solve the linear system B~x when the LU factors of A
and B still need to be computed? Strategy (i): to compute the full matrix B then compute LU
and then solve, or Strategy (ii): the one you developed using identity (1)? What about if A has a
sparse structure?
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